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Existence of a long time scale in quantum chaos
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An analysis of a popular model, the quantum kicked top, is presented based on the entropy of a quantum
state. It is shown that typically the quantum chaos persists on a long timetgedle?. A simple estimate for
the crossover from a shaftogarithmig to a long(diffusion) time scale is derived S1063-651X97)06406-4

PACS numbsgs): 05.45:+b, 03.65.Bz, 05.406:j

In a recent papdr] Alicki, Makowiec, and Miklaszewski  to(p)~j%/D~p~2>1. During the relaxation process the
presented one more confirmation for the existence of thguantum entropy keeps growing until it reaches the maximal
short (logarithmig time scale in quantum chaos using avalueH,, for the ergodic state:
simple model of the kicked quantum top and a finite-time
analog of the classical dynamical Kolmogorov-SirKiS)
entropy. This random time scak~In% "%, on which the H()=-2> f(J3,,0)Inf(J,,) =He=In(2j+1), (3)
guantum motion is similar to the classical one including the
exponential instability, had been discovered in R&f.and
was subsequently confirmed and studied further in many p

%on function
pers[3-5] (see also Ref.6]). - . o
The main purpose of this paper is to point out that in. For an initially narrow Gaussian distribution the entropy

. ' ) : in the diffusion regime isHp(t)~In(27weDf)/2, assuming
addition to this short time scale there is generally another. ; ;
onetg, which is much longer (I—Infi-%) agd on w}rlﬂch a J,>1 andD(J,)~ const[9]. This entropy growth is much

artial quantum-classical correspondence persists nameISIOWer than -~ that = on the random ~time scale
P 9 e P per ' ¥<t, [H,(t)=th,] and the corresponding KS entropy van-
the quantum diffusion closely follows the classical one even ; i ) ’
. ) iIshes[10], as it should for a quantum motion with a discrete
though the former is dynamically stabl&] (see also Refs.
X X ) spectrum.
[3,5]). The absence of the long scafein the model in1] is . . . _
) . ) Notice that in the classical limit the entropy would grow
a result of a special choice for one model’s parameters value

: . . indefinitely with constant ratdn, = A~In(K/2) due to the
Generally, the quimtum top is descritjéqlby the unitary continuity of the variablel, as explained in the beginning of
operator(per kick,A=1)

Ref.[1] (see also Ref.11]). In the quantum case the classi-
cal instabilityh, is restricted to the short time scdlg which
can be found approximately from the equation
th,(t;)=Hp(t,). This gives an asymptoticj =) estimate
t,~In(pj)/In(pK), in agreement with previous resul[td—5|.

whereJ, are integers andi(J,) =|(J,,t)|? is the distribu-

U(p.k,j)=e rig-ipdy (1)

which depends on two classical parameteendp and one

guantum parametegrs>1 (in quasiclassigs In Ref. [1] the 4 ) e
_ : . : The final steady state is ergodic with entro(8) only
value p= /2 was chosen following Ref8], in which the under the addifional condition[3,5.9 to,<ty=(2]

only reason for such a choice was merely to simplify the . .
y " ce W y implify +1)/2r=expHe)/2m or jp?>1, wheret, is the mean

guantum map. This particular choice leads to a nongeneric ; : . .
fast (“ballistic” ) relaxation to the ergodic steady state. Ac- duasienergy level density, also called the Heisenberg time. In

cording to data in Fig. 2[1], the relaxation time thg opposite casejp_zsl_) the quantum diffusion is re-
ter(p)~1.5 iterations only, in this case. Moreover, some re-StrICtGd to the relaxatiofdliffusion) time scalef3,5,9)

laxation occurs even for almost regular motida=1; see -
Fig. 1 in Ref.[1]). tr~D~(p))sSty. (4)
On the contrary, ip<1 the relaxation becomes diffusive

and relatively slow, and only for chaotic motion, of course,Hence, the quantum steady state is essentially nonergodic

namely, when the parametiér=pk>1. In the simplest case due to localization of quantum diffusion. Assuming approxi-

|J,|<j the diffusion rate inJ, is [8,9] mately exponential localization with a characteristic length
I~D, the final steady-state entropy in this case is

1 - H,~1+InD—2In(pj)<H,,.
D~ (PDC(K)~(p))?, 2 The diffusive time scalég (4), which is our main interest

here, is always much longer than the instability scile

whereC(K)~1 accounts for dynamical correlations. HenceOnly for t>tg is the motion completely dominated by the

the relaxation time (in number of kicky is  quantum effects.
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